Null Validation
ColumnBeNull
Check if the values in a column are null.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
column
|
str
|
Column to validate. |
required |
threshold
|
float
|
Threshold for validation. Defaults to 0.0. |
0.0
|
impact
|
Literal['low', 'medium', 'high']
|
Impact level of validation. Defaults to "low". |
'low'
|
Examples:
>>> import pandas as pd
>>> from validoopsie import Validate
>>>
>>> # Validate field contains only nulls
>>> df = pd.DataFrame({
... "id": [1, 2, 3],
... "optional_field": [None, None, None]
... })
>>>
>>> vd = (
... Validate(df)
... .NullValidation.ColumnBeNull(column="optional_field")
... )
>>> key = "ColumnBeNull_optional_field"
>>> vd.results[key]["result"]["status"]
'Success'
>>>
>>> # When calling validate on successful validation there is no error.
>>> vd.validate()
Source code in validoopsie/validation_catalogue/NullValidation/column_be_null.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
|
ColumnNotBeNull
Check if the values in a column are not null.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
column
|
str
|
Column to validate. |
required |
threshold
|
float
|
Threshold for validation. Defaults to 0.0. |
0.0
|
impact
|
Literal['low', 'medium', 'high']
|
Impact level of validation. Defaults to "low". |
'low'
|
Examples:
>>> import pandas as pd
>>> from validoopsie import Validate
>>>
>>> # Validate field has no nulls
>>> df = pd.DataFrame({
... "id": [1, 2, 3],
... "required_field": ["a", "b", "c"]
... })
>>>
>>> vd = (
... Validate(df)
... .NullValidation.ColumnNotBeNull(column="required_field")
... )
>>> key = "ColumnNotBeNull_required_field"
>>> vd.results[key]["result"]["status"]
'Success'
>>>
>>> # When calling validate on successful validation there is no error.
>>> vd.validate()
Source code in validoopsie/validation_catalogue/NullValidation/column_not_be_null.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
|