Type Validation
TypeCheck
Validate the data type of the column(s).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
column
|
str | None
|
The column to validate. |
None
|
column_type
|
type | None
|
The type of validation to perform. |
None
|
frame_schema_definition
|
dict[str, type] | None
|
A dictionary of column names and their respective validation types. |
None
|
threshold
|
float
|
Threshold for validation. Defaults to 0.0. |
0.0
|
impact
|
Literal['low', 'medium', 'high']
|
Impact level of validation. Defaults to "low". |
'low'
|
Examples:
>>> import pandas as pd
>>> from validoopsie import Validate
>>> from narwhals.dtypes import IntegerType, FloatType, String
>>>
>>> # Validate column types
>>> df = pd.DataFrame({
... "id": [1001, 1002, 1003],
... "name": ["Alice", "Bob", "Charlie"],
... "balance": [100.50, 250.75, 0.00]
... })
>>>
>>> vd = (
... Validate(df)
... .TypeValidation.TypeCheck(
... frame_schema_definition={
... "id": IntegerType,
... "name": String,
... "balance": FloatType
... }
... )
... )
>>>
>>> key = "TypeCheck_DataTypeColumnValidation"
>>> vd.results[key]["result"]["status"]
'Success'
>>>
>>> # When calling validate on successful validation there is no error.
>>> vd.validate()
Source code in validoopsie/validation_catalogue/TypeValidation/type_check.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
|