Value Validation
ColumnValuesToBeBetween
Check if the values in a column are between a range.
If the min_value
or max_value
is not provided then other will be used as the
threshold.
If neither min_value
nor max_value
is provided, then the validation will result
in failure.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
column
|
str
|
Column to validate. |
required |
min_value
|
float | None
|
Minimum value for a column entry length. |
None
|
max_value
|
float | None
|
Maximum value for a column entry length. |
None
|
threshold
|
float
|
Threshold for validation. Defaults to 0.0. |
0.0
|
impact
|
Literal['low', 'medium', 'high']
|
Impact level of validation. Defaults to "low". |
'low'
|
Examples:
>>> import pandas as pd
>>> from validoopsie import Validate
>>>
>>> # Validate numeric range
>>> df = pd.DataFrame({
... "age": [25, 30, 42, 18, 65]
... })
>>>
>>> vd = (
... Validate(df)
... .ValuesValidation.ColumnValuesToBeBetween(
... column="age",
... min_value=18,
... max_value=65
... )
... )
>>> key = "ColumnValuesToBeBetween_age"
>>> vd.results[key]["result"]["status"]
'Success'
>>>
>>> # When calling validate on successful validation there is no error.
>>> vd.validate()
Source code in validoopsie/validation_catalogue/ValuesValidation/column_values_to_be_between.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
|
ColumnsSumToBeBetween
Check if the sum of columns is greater than or equal to max_sum
.
If the min_value
or max_value
is not provided then other will be used as the
threshold.
If neither min_value
nor max_value
is provided, then the validation will result
in failure.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
columns_list
|
list[str]
|
List of columns to sum. |
required |
min_sum_value
|
float | None
|
Minimum sum value that columns should be greater than or equal to. |
None
|
max_sum_value
|
float | None
|
Maximum sum value that columns should be less than or equal to. |
None
|
threshold
|
float
|
Threshold for validation. Defaults to 0.0. |
0.0
|
impact
|
Literal['low', 'medium', 'high']
|
Impact level of validation. Defaults to "low". |
'low'
|
Examples:
>>> import pandas as pd
>>> from validoopsie import Validate
>>>
>>> # Validate macronutrient sum in range
>>> df = pd.DataFrame({
... "protein": [26],
... "fat": [19],
... "carbs": [0]
... })
>>>
>>> vd = (
... Validate(df)
... .ValuesValidation.ColumnsSumToBeBetween(
... columns_list=["protein", "fat", "carbs"],
... min_sum_value=30,
... max_sum_value=50
... )
... )
>>> key = "ColumnsSumToBeBetween_protein-fat-carbs-combined"
>>> vd.results[key]["result"]["status"]
'Success'
>>>
>>> # When calling validate on successful validation there is no error.
>>> vd.validate()
Source code in validoopsie/validation_catalogue/ValuesValidation/columns_sum_to_be_between.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
ColumnsSumToBeEqualTo
Check if the sum of the columns is equal to a specific value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
columns_list
|
list[str]
|
List of columns to sum. |
required |
sum_value
|
float
|
Value that the columns should sum to. |
required |
threshold
|
float
|
Threshold for validation. Defaults to 0.0. |
0.0
|
impact
|
Literal['low', 'medium', 'high']
|
Impact level of validation. Defaults to "low". |
'low'
|
Examples:
>>> import pandas as pd
>>> from validoopsie import Validate
>>>
>>> # Validate component sum equals total
>>> df = pd.DataFrame({
... "hardware": [5000],
... "software": [3000],
... "personnel": [12000],
... "total": [20000]
... })
>>>
>>> vd = (
... Validate(df)
... .ValuesValidation.ColumnsSumToBeEqualTo(
... columns_list=["hardware", "software", "personnel"],
... sum_value=20000
... )
... )
>>> key = "ColumnsSumToBeEqualTo_hardware-software-personnel-combined"
>>> vd.results[key]["result"]["status"]
'Success'
>>>
>>> # When calling validate on successful validation there is no error.
>>> vd.validate()
Source code in validoopsie/validation_catalogue/ValuesValidation/columns_sum_to_be_equal_to.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
|